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Abstract—Achieving longer mission duration, increased science
return, and flexability for follow on observations motivated by
unanticipated discoveries is facilitated through improvements in
trajectory generation, particularly with respect to computational
efficiency of computing near-optimal solutions of constrained
optimization problems. Practical complications to be faced also
include solving an ensemble of constrainted optimization prob-
lems for random initial and/or final states, uncertainty in the dy-
namics, and quantifying state measurement error during tracking
and navigation. Here we formulate a probabilistic approach to
control allowing convergence to optimal solutions over an entire
set of boundary conditions, as well as allowing other sources of
uncertainty to be included. Furthermore, we use insight provided
from a global view of phase space structure (i.e. a “dynamical
systems” viewpoint of the free trajectories) to guide computation
and improve efficiency of trajectory generation. A numerical
example of providing initial guess solutions for the restricted
three-body problem is given, and future work including stochastic
algorithms for improvement of these initial solutions discussed.

I. I NTRODUCTION

Increasing science return from space missions, through
longer mission duration and flexability for follow on obser-
vations motivated by unanticipated discoveries, is facilitated
through improvements in trajectory generation, particularly
with respect to computational efficiency of computing near-
optimal solutions. Practical complications to be faced include
solving an ensemble of constrained optimization problems for
random initial and/or final states, including uncertainty in the
dynamics, and quantifying state measurement error during
tracking and navigation. Here we formulate a probabilistic
approach to control allowing convergence to optimal solutions
over an entire set of boundary conditions, as well as allowing
other sources of uncertainty to be included. Such a capability
is particularly important in both the design stage (where
typically a “sensitivity analysis” is important in order to
validate the capability of the spacecraft to achieve the mission
objectives even in the presence of launch vehicle error and
other perturbations) and in flight, requiring precise control over
uncertainty for tracking and navigation.

Ideally, mission design could begin with scientists listing
a collection of “interesting way points” (a rank ordered pri-
oritized list of scientifically interesting targets, with times on
station, etc.). The problem then is to solve for anoptimal tra-
jectory, which hits as many of the way points of interest with
the smallest expenditure of, for example, fuel. The importance

of finding optimal solutions to the trajectory design problem
is an increased capacity of potential science return (quantified
intuitively by number of “interesting places” visited, and
length of time “on station” at each). Given constraints such
as finite time and fuel, there is obviously a maximum value
of the “potential science return”. Feasible solutions possibly
far away from globally optimal solutions, may be entirely
acceptable for some less ambitious missions with a small
number of objectives. However, for missions the ambitious
goal of maximizing potential science return, it is increasingly
important to have algorithms which can explicitly control
global distance to optimal solutions.

Optimal control problems are notoriously difficult to solve
for nonlinear dynamical constraints (see for example Bryson
and Ho, 1969). However, what has recently been recognized
and applied (Howell et al. 1997, Serban et al. 2002, Gómez
et al., 2004) to current and future mission design (including
Genesis, WMAP, and Planck scheduled for launch in 2008)
is the ability of dynamical systems theory to provide insight
and guide computation of optimal trajectories. Specifically,
the science goals of these missions have been enabled by
using halo orbits about the Lagrange point L1 of the Earth-
Sun-spacecraft three-body dynamics. These halo orbit of the
Genesis mission was the first to be designed entirely from
dynamical systems theoretic insight This work validated the
concept of trajectories which follow invariant manifolds of
the underlying dynamics, and led to the general idea of the
“interplanetary superhighway”, in which trajectories can be
designed by hopping on and off the manifolds of the dynamics
providing free or extremely low cost transport throughout 3
or higher body systems. A wide range of mission concepts
have subsequently been proposed which make use of these
trajectories, and re-revitalized the goal of computing optimal
or near optimal trajectories for space mission design. Provided
we can meet the challenges of computing these trajectories and
subsequently navigating them,we are rewarded with longer
mission duration and increased potential for science return.

Compounding the challenge are sources of uncertainty that
require not just high accuracy and “near-optimal” solutions for
one set of initial and final target states, but an entire ensemble
of these problems due to uncertainty in initial conditions
(such as arising from launch vehicle error). The importance of
characterizing the entire set of optimal solutions for random



boundary conditions is important for validation of a mission
design to achieving a majority of the objectives even in the
presence of various uncertainties, including launch vehicle
error and/or perturbations to the model of the dynamics. Halo
orbits for example, have the unfortunate characteristic that
their successful navigation is extremely sensitive to launch
vehicle error . In contrast to interplanetary missions where
launch vehicle error can be corrected within 7-14 days after
launch, halo orbit missions must generally correct launch
vehicle error within the first 7 days after launch or the
required ∆V to correct the trajectory will be beyond the
spacecraft’s capability (Serban et al, 2002). We therefore need
to control the computational error over an entire ensemble of
boundary conditions in order to accommodate initial periods of
spacecraft checkout and orbit determination which invariably
cut into our overall fuel budget.

Precise quantification of uncertainty in the actual trajectory
is therefore increasingly important in order to accurately
compute and closely navigate optimal trajectories utilizing the
underlying “connectivity of phase space” provided by the full
underlying nonlinear dynamics. For this purpose we therefore
need an algorithmic framework which provably converges
to optimal solutions for randomly chosen initial and/or final
states. It is difficult to prove convergence of determinis-
tic algorithms for optimal control problems with nonlinear
dynamical constraints due to the potential convergence to
local as opposed to global minima of the objective function
defining optimality.The goal of convergence on sets of optimal
solutions with randomly chosen boundary conditions leads us
to consider a probabilistic approach to the entire problem
itself. Moreover, other sources of uncertainty can naturally
be included in this framework, including perturbations to the
dynamics, as well as the closed-loop control challenge of
smoothing (quantifying uncertainty in the entire past trajectory,
up to and including the current state) when supplied with state
measurements with noise.

Our strategy is to 1) use insight provided by dynamical
systems theory to quickly sample from what we call the “initial
ensemble” of solutions, 2) construct a sequence of probability
measures directly which provably converge on sets of optimal
solutions given randomly chosen boundary conditions, and
3) use sampling algorithms such as Markov Chain Monte
Carlo or particle filters to directly sample solutions from
these probability densities, with increasingly better solutions
“learned” as computation progresses.

While more expensive than standard deterministic schemes
for single BC’s, as discussed above,the goal is really to
control the figure of merit defining optimality over entire sets
of solutions, in order to permit validation (during design)
and implementation (during flight) of mission scenarios in the
presence of uncertainty. As mentioned above, the potential
payoff of rendering the probabilistic approach computationally
efficient enough for practical use are trajectories which offer
the capacity for increased science return through increased
mission duration and added flexibility for follow-on observa-
tions motivated by unanticipated discoveries.

In this paper, we first review the formulation of trajectory
design as a problem of optimal control, and discuss the
resulting algorithmic challenges in solving these problems.
We then discuss the three-body dynamics and the dynamical
systems theoretic insight leading to near-optimal trajectories.
We then provide an overview of the probabilistic framework
for these problems, and comment on progress made in the first
step of initializing the samples of solutions for sets of random
boundary conditions. We close with a discussion of work in
progress leading to stochastic algorithms for improvement of
these trajectories and convergence in probability to sets of
optimal solutions for random boundary conditions.

II. OVERVIEW OF TRAJECTORYDESIGN AND NAVIGATION

A. Statement of the Problem

Here we provide a brief overview of the trajectory design
problem. We are interested in finding control inputsu(t) such
that for some dynamicsF ◦ y (with y the system state vector
and F ◦ y the vector field of the dynamics evaluated at the
current state) the trajectory, given as a solution to the non-
autonomous ordinary differential equation (ODE)

ẏ = F ◦ y(t) + u(t) (1)

traverses from some specified initial statey(0) to some spec-
ified target final statey(T ).

As an example for this paper, we consider the dynamics of
the (circular restricted) three-body problem including control
inputs involve the system of equations (see for example Serban
et al. 2002)

ẏ1 = y4 (2)

ẏ2 = y5 (3)

ẏ3 = y6 (4)

ẏ4 = 2y2 +
∂U

∂y1
+ u1(t) (5)

ẏ5 = −2y1 +
∂U

∂y2
+ u2(t) (6)

ẏ6 =
∂U

∂y3
+ u3(t) (7)

m(t)u1(t) = ṁ(t)Vnozzle sin θ(t) cos φ(t) (8)

m(t)u2(t) = ṁ(t)Vnozzle sin θ(t) sinφ(t) (9)

m(t)u3(t) = ṁ(t)Vnozzle cos θ(t) (10)

where in the rotating coordinate system

U =
1
2
(y2

1 + y2
2) +

1− µ

[(y1 + µ)2 + y2
2 + y2

3 ]1/2

+
µ

[(y1 − 1− µ)2 + y2
2 + y2

3 ]1/2
(11)

and where in the above we have assumed the control inputs are
generated by a rocket with nozzle velocityVnozzle and which
can swivel through angles(θ, φ), and finally can be throttled
by controllingṁ.

The true solutions of the dynamics, otherwise known as the
free trajectories, are simply those which, for a given initial



condition y(0) have u(t) = 0. Clearly, the set of potential
target statesy(T ) is limited by the restriction of vanishing
control input. Provided we have a “powerful rocket”, we can
effectively go anywhere in the phase space desired, and in fact,
for any chosen path, the control input required to follow that
path is trivially computed by re-arranging the above tosolve
for u(t) according to

u(t) = ẏ − F ◦ y(t) (12)

Note that in what follows we will refer tou(t) either as the
“residual”, or “defect”, or “control input” (u(t) is one measure
of error typically controlled when numerically solving initial
value problems for ODE’s). Typically, thecost of following
any given path can be related to the “magnitude” of the control
input, measured with a norm on the space of continuous
functions

‖u‖Lq =

(∫ T

0

dt ‖u(t)‖q
lp

)1/q

(13)

with ‖ · ‖lp a vectornorm (i.e. the norm of the instantaneous
control vector at the timet).

Denoting the cost of traversing the pathy(t) from specified
boundary conditionsy(0) = xi, y(T ) = xf in time T

Γ(y(xi, xf )) = ‖ẏ(t;xi, xf )− F ◦ y(t;xi, xf )‖Lq (14)

our goal is to find an optimal pathy∗ so that

y∗(xi, xf , T ) = min
y

Γ[y(xi, xf , T )] (15)

In order to compute such an optimal path we can turn to a
formulation of optimal open-loop control using the calculus
of variations, which we now briefly discuss (we will use this
later in a simplified linear setting later in order to efficiently
compute initial approximations to they∗ which can then be
improved with subsequent computation).

B. Optimal Open-Loop Control

Following (Bryson and Ho, 1969), optimal (open-loop)
control is typically formulated as constrained optimization,
with the associated “action” functional

J = φ[xf , T ] + ν · y(T ) +
∑

i

[
λ · y|ti+1

ti

+
∫ ti+1

ti

dt L(y, u, t) + λ(t) · (f(y, u, t)− ẏ)− λ̇ · y
]

(where in the abovef(y, u, t) ≡ F ◦ y +u) which gives, from
the calculus of variations, the equations

ẏ = f(y, u, t)

λ̇ = −∂L

∂y
− ∂f

∂y
λ

0 =
∂L

∂u
+

∂f

∂u
λ

λ(t(−)
i ) = λ(t(+)

i )

(λ + ν)(T ) =
∂φ

∂y

∣∣∣∣
T

(16)

The boundary conditions are mixed withy(0) = xi andλ(T ).
These problems are notoriously hard to solve for nonlinear

dynamical constraints due to the lack of knowledge (or ed-
ucated guess) as to the initial value of the adjoint variable
required for forward integration (or an approximate path
needed to integrate backwards in time for the adjoint variable).
In fact, trying to numerically integrate these equations with
poorly guessed initial conditions forλ(0) can “. . . produce
’wild’ trajectories in the state space. These trajectories may be
so wild that values ofx(t) and/orλ(t) exceed the numerical
range of the computer!” (Bryson and Ho, 1969).

C. Guiding Computation with Dynamical Systems Theory

It has recently been recognized that nonlinear trajectories
provide a network of free trajectories that offer transport to
widely separated regions in phase space (the ’IPS’). This
provides an efficient means to sample from the initial ensemble
(as we will demonstrate). In other words, we can map out
the invariant manifolds in the phase space, and patch together
trajectory segments.

Mapping out the IPS network holds the promise of max-
imizing the reachable setof configuration space at minimal
cost. For space missions specifically, we want to maximize
the volume of locations in the Solar System that are reachable
within some time with a given fuel budget. It has recently been
recognized that, when including the full non-linearity of the
three and higher body dynamics, there are “free” trajectories
(i.e. true solutions of the dynamics) that nevertheless result in
transport to widely different regions of configuration space.
Specifically, these trajectories tend to wind on and off various
invariant manifolds in the phase space, and are suggestive of a
new approach to computing solutions to optimal control, with
the computation of trajectories guided by insight provided by
dynamical systems theoretic views of the global structure of
phase space. Provided we can meet the challenges of comput-
ing these trajectories and subsequently navigating them,we are
rewarded with longer mission duration and increased potential
for science return.

III. A P ROBABILISTIC APPROACH

A. Motivation

Independent of the algorithm used, we always have to
supply an “initial guess” of the solution to the control problem
which is to be improved with subsequent computation until
some stopping criterion (we reach some target level of the
optimality figure of merit or reach our maximum allowed time
of computation). We refer to the initial guess solutions (we
have an entire set for the set of initial and/or final states) as
the initial ensemble. Assuming some distribution on the initial
and final states, we have (even for deterministically supplied
initial solutions) adistribution of residualsP (0)(Γ).

P (0)(Γ) =
∫ Γ

0

dγ

∫
d(xi, xf , T ) p(xi, xf , T )

δ
(
γ − Γ(y(0)(xi, xf )

)
(17)



where the initial solution approximation, denoted as a function
of the boundary conditions is denotedy(0)(t;xi, xf ). There is
a limiting distribution given by finding the optimal solution
for every set of randomly chosen BC’s,P (∗)(Γ) where

P (∗)(Γ) =
∫ Γ

0

dγ

∫
d(xi, xf , T ) p(xi, xf , T )

δ
(
γ − Γ(y(∗)(xi, xf )

)
(18)

We therefore want an algorithm (deterministic or otherwise)
which provably converges in distribution

P (n)(Γ) →n P (∗)(Γ) (19)

and even better if it does so quickly (i.e. in as few a number
of “steps” as possible, i.e. with as little computational expense
as possible).

It is difficult to prove convergence in distribution for deter-
ministic systems, as for non-linear dynamical constraints we
often encounter convergence to local minima, resulting in a
distribution that is alwaysmajorizedby the limiting measure
(more concentrated about lower residuals, since each solution
reaches a local minimum with residual greater than that of the
global optimum for each set of BC’s). The goal of convergence
in distribution of the residual for random boundary conditions
(or at the very least random initial conditions) leads us to
consider a probabilistic approach to the entire problem itself.
Our strategy is to 1) construct a sequence of probability mea-
sures directly which have the desired convergence properties as
above, and 2) using sampling algorithms (including MCMC,
particle filters, etc) to directly sample solutions from these
probability densities. With this approach, we have an algo-
rithmic framework for any dynamical system, which provably
converges in the probabilistic sense above.

Finally, other sources of uncertainty can naturally be in-
cluded in this framework, including perturbations to the
dynamics, as well as the closed-loop control challenge of
smoothing (quantifying uncertainty in the entire past trajectory,
up to and including the current state) when supplied with state
measurements with noise.

B. Components of the Probabilistic Approach

Roughly, the joint density for “everything” is

p(Dx, y1:n, n, T, xi, xf ) = p(Dx|y1:n, xi, xf )p(y1:n|xi, xf )
×p(n|T )p(T |xi, xf )p(xf , xi)

where(Dx, Du) are noisy measurements of the state and con-
trol inputs respectively,y1:n is a parametrized representation
of a continuous time solution estimator (for example the state
vector at the discrete times{t1:n}, but other forms can be used
as well), T is the total time, and(xi, xf ) are the boundary
conditions. The “inverse problems” of inferring trajectories
given initial conditions, and/or control inputs given target final
states and noisy state measurements along the way, are then
viewed as solved by sampling from the associated conditional
densities. What is interesting is that a very broad class of
problems can be formulated with this specific mathematical

Fig. 1. Numerically integrated trajectories given by choosing random initial
conditions about the CR3BP Lagrange (fixed) pointsL1 andL2, followed by
integrating forward and backward in time resprectively.

goal - sample from various marginalized conditionals from
the above joint density. We refer the interested reader to
(Jewell, 2007, in preparation) for more details concerning the
construction of the factors in the joint probability density
above as well as proofs of convergence to sets of optimal
solutions given randomly chosen boundary conditions.

We now turn to sampling from the initial ensemble, which
is always used to initialize any algorithm of choice. As
mentioned previously, our strategy is to use insight from
dynamical systems theory to effeciently generate trajectories
that have the rough qualitative character of optimal trajectories
(possibly over a wide range of total timesT ).

IV. SAMPLING FROM THE INITIAL ENSEMBLE

A. Dynamical Systems Insight into Choice of BC’s

Following (Gomez et al., 2002, Nonlinearity) we have
very educated guesses for choosing initial conditions such
that, when integrated forward and backward in time from
the vicinity of the Lagrange points, pass near each other
along a Poincare section at the planey1 = 1.0 From the
dynamical systems theoretic viewpoint, these forward and
backward integrated trajectories follow the unstable and stable
(forward in time) manifolds, which we now know intersection
in the planey1 = 1.0. Shown in figure 1 are such paths, which
we will smoothly patch together to form a continuous path as
an initial trial solution to the optimal control problem.

B. Approximate Trajectories

The intuition is that we can quickly generate reasonably
good approximations to optimal solutions by creating a “li-
brary” of shorter length solution segments, for which dynam-
ical systems theory and “global views of phase space” can
provide guidance, followed by smoothly patching these seg-
ments together in order to satisfy postulated or assumed global
constraints (such as paths which solve a control problem, agree
with noisy measurements, etc.). Here we consider to manner
in which we can patch together these solution segments - we
phrase this as a control problem and provide a solution from
a variational approach.



To do this note that for any path we have the required control
inputs to follow that path given by

ẋ(t) = F ◦ x(t) + u(t) (20)

One way to find low residual paths is to consider paths built
up by smoothly transitioning between local path segments of
small residual (i.e. as generated by integrating forward and
backward initial value problems). We can then simply define

û(t) + δu(t) = F ◦ x− F ◦ y − [J ◦ y](x(t)− y(t)) (21)

where we have arbitrarily set the “control inputs”û(t) to be
determined by some chosen path which satisfies the dynamics
linearized about the reference paths

ẋ(α1:n, t) = ẏ + [J ◦ y](x(α1:n, t)− y(t)) + û(t) (22)

subject to the boundary conditions. If we denote the residual
of the reference path segments asε, then we have the upper
bound on the residual of our path

‖ẋ− F ◦ x‖ ≤ ‖ε‖+ ‖δu‖ (23)

We are free to choose any path, but the intuition is that good
choices are given by those that follow the reference paths but
satisfy BC’s while minimizing quadratic cost.

Specifically, the goal is to find paths, given a reference path
(with jumps at discrete times), which minimizes the quadratic
“defect” cost subject to the piecewise dynamical constraints

f(x, u, t) = ẏi + [J ◦ yi](x− yi) + u (24)

The overall functional to be minimized in order to solve this
constrained optimization problem is

J =
(∫

dt ‖u‖2

)
+ ν · x(T ) +

∑
i

(
−λ · x|ti+1

ti

+
∫ ti+1

ti

dt λ(t) · f(x, u, t) + λ̇ · x
)

(25)

Note that the dynamical constraints here areδ̇ = [J ◦
yi](t)δ(t) + u(t), which gives the solution on each piecewise
interval, for any driving forceu(t),

δ(t ∈ Ij) = e

∫ t

tj
dt J◦yj(t)

(x(tj)− yj(tj)+∫ t

tj

dt′ e
−
∫ t′

tj
dt′′ J◦yj(t

′′)
u(t′)

)
(26)

Also note that for any exact solution to the dynamicsẋ = F◦x,
there is a driving forceu = F ◦x− ẏi−J ◦yi(x−y). The idea
is that for reference paths which are close to or exact solutions
over the intervalsIj , that if we find paths that smoothly
transition from one manifold to the other with the control input
that minimizes‖u‖, then this will be a close to a true solution
provided the jumps are small. This problem then allows us
to patch together many short solution segments, which are
“concatenated” together using insight from dynamical systems
theory.

Fig. 2. The continuous path obtained by solving the optimal linear control
problem given by matching specified boundary conditions about the two
Lagrange points.

As discussed previously, calculus of variations gives the
system of equations

ẋ = ẏi + J ◦ yi(x− yi) + u

λ̇ = −[J ◦ yi]T · λ
u = −λT

ν = λ(T ) (27)

We know that in the absence of the endpoint boundary
conditions (withν = 0), that u = 0, which is consistent with
the above equations, and where forward in time the solution
will track y1(t) up to the first jump, after which the fluctuation
will evolve linearly during the next arc, and so on. Also, with
no jumpx ≡ y. Since we have a piecewise linear system, we
might expect that the vectorν linearly depends on the initial
and final state.

As noted previously, stability of the numerical solution
of the above is a major concern. One approach to control
this is essentially a stabilized march method (see Ascher et.
al., 1995), with some minor modifications. The idea is to
integrate2n solutions to the optimal linear control equations
forward and backward in time from the jump, with initial
conditions given by variations in each of the standard basis.
As we march the collection of fundamental solutions along,
we monitor their linear independence (here measured by the
condition number of the evolved covariance matrix). When
a threshold is reached, we reset the initial conditions of the
fundamental solutions to the original (therefore giving the
original covariance matrix).

Using this procedure with the forward and backward paths,
and a jump at the time of closest approach, we obtain the
smoothed continuous path shown in figure 2.

V. CONCLUSIONS

Motivated by the potential increase in science return from
space missions enabled by improvements in trajectory gen-
eration in the presence of uncertainty, we have formulated a
probabilistic approach to trajectory generation which provably
converges to entire sets of optimal solutions for random bound-
ary conditions. Such a capability is particularly important in



both the design stage (where typically a “sensitivity analysis”
is important in order to validate the capability of the spacecraft
to achieve the mission objectives even in the presence of
launch vehicle error and other perturbations) and in flight,
requiring precise control over uncertainty for tracking and
navigation.

While optimal control problems are notoriously difficult to
solve for nonlinear dynamical constraints (see for example
Bryson and Ho, 1969), we meet this challenge with recent
insight into the global phase space structure for dynamical
systems relevant for space mission design (Howell et al.
1997, Serban et al. 2002, Gómez et al., 2004) as well as a
probabilistic approach which provably converges to sets of
(globally) optimal solutions. Specifically our strategy is to 1)
use insight provided by dynamical systems theory to quickly
sample from what we call the “initial ensemble” of solutions,
2) construct a sequence of probability measures directly which
provably converge on sets of optimal solutions given randomly
chosen boundary conditions, and 3) use sampling algorithms
such as Markov Chain Monte Carlo or particle filters to
directly sample solutions from these probability densities, with
increasingly better solutions “learned” as computation pro-
gresses. In this paper we have demonstrated one approach to
using dynamical systems theory to provide trajectory segments
which can be smoothly joined (using optimal linear control)
to quickly compute initial trajectories with the qualitative
character of optimal solutions. Future work will use stochastic
sampling algorithms toimprove the “cost” figure of merit in
an algorithmic setting which provably converges.
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